A Novel Control Method for Shallow Underwater Robot
نویسندگان
چکیده
For the coordination and control of robot behavior, behavior decision is the foundation and the determinant of robot intelligence. Based on autonomous underwater vehicle (AUV), through the analysis of domestic anti-surge technology research status and inrush current model, a control technology with the use of behavioural decision upper and lower piecewise integration control between PID and FPID(Fuzzy PID) is designed. Then, according to the characteristics of underwater robotics and inrush current optimal path planning, AUV can get information and plan a different anti-surge behavioural decision, which makes underwater robot better complete the underwater operations. Finally, the simulation of anti-surge behaviour underwater robot is done. The results show that it achieves a good control performance, and the environmental adaptability of AUV has been improved.
منابع مشابه
کنترل مسیر خودکار میکرو زیردریایی 3 درجه آزادی با الهام از حرکت کوسهماهی
An autonomous underwater vehicle (AUV) with less noise and vortices as well as efficient power consumption, is pursued in this research by inspiration of shark swimming. Design, hydrodynamic analysis, modeling, fabrication, navigation, and control of this novel AUV is the main goal of this research. Detailed explanation of the test and experiment with a brief overview on fabrication are provide...
متن کاملبازرسی خطوط انتقال نفت و گاز زیر دریا بوسیله ربات زیرسطحی با بردار رانش متغیر جدید
This paper presents a special underwater robot for subsea pipelines inspection which is used to transport extracted oil and gas from oil platforms to onshore facilities. Due to the high pressure in the deep sea and the long pipelines, it is impossible to inspection by divers. Therefore underwater robot can be used to solve this problem. This paper investigate a hovering type of underwater vehic...
متن کاملModeling and Simulation of Motion of an Underwater Robot Glider for Shallow-water Ocean Applications
This paper describes the modeling and simulation of an underwater robot glider used in the shallow-water environment. We followed the Equations of motion derived by [2] and simplified dynamic Equations of motion of an underwater glider according to our underwater glider. A simulation code is built and operated in the MATLAB Simulink environment so that we can make improvements to our testing gl...
متن کاملتوسعه یک مدل سه بعدی روبات ماهی و مقایسه آزمایشگاهی نتایج
Biomimetic underwater vehicle design has attracted the attention of researchers for various reasons such as ocean investigation, marine environmental protection, exploring fish behaviors and detecting the leakage of oil pipe lines. Fish and other aquatic animals have good maneuverability and trajectory following capability. They also efficiently stabilize themselves in currents and surges leave...
متن کاملCONTROL OF FLEXIBLE JOINT ROBOT MANIPULATORS BY COMPENSATING FLEXIBILITY
A flexible-joint robot manipulator is a complex system because it is nonlinear, multivariable, highly coupled along with joint flexibility and uncertainty. To overcome flexibility, several methods have been proposed based on flexible model. This paper presents a novel method for controlling flexible-joint robot manipulators. A novel control law is presented by compensating flexibility to form a...
متن کامل